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Abstract—Pair programming with AI often faces challenges
in productive communication and engagement. Integrating em-
bodiment offers a promising solution by making AI a more
engaging and context-aware programming partner. To explore
how embodied AI agent supports programming learning and
affects user experiences, we designed a virtual reality (VR) pro-
gramming environment with Wizard-of-Oz-controlled AI agents.
Our study collected data from 18 participants through knowledge
acquisition assessments and interviews. The results showed that
embodiment improved engagement, enhanced communication
efficiency, and offered emotional support. Specifically, the incor-
poration of embodied actions allows users to perceive the AI agent
as a “programming partner” and introduces many interactions
that resemble those shared with real-life partners. However,
the effectiveness of embodied actions in supporting users with
programming tasks depends on the timing and accuracy of those
actions. This study reveals the potential of embodied AI agents
in advancing programming education and provides valuable
design insights for creating more intuitive and supportive AI
programming partners.

Index Terms—Pair Programming, Virtual Reality, Human-AI
Collaboration, Embodied AI Agents

I. INTRODUCTION

Programming is increasingly recognized as a critical skill,
providing the foundation for developing problem-solving and
computational thinking skills essential in various domains [1]–
[3]. While programming offers numerous benefits to students,
learning programming skills can be challenging due to the
abstract nature of knowledge structures, the practical demands
of implementation [4]–[6], and the lack of personalized pro-
gramming experiences [7].

With the advent of Large Language Models (LLMs), pro-
gramming with Artificial Intelligence (AI), exemplified by
Github’s Copilot [8], introduces a new paradigm of person-
alized programming education to respond to this challenge.
Similarly to human-human pair programming, the user and
AI agent work on the same programming task, where the
user takes responsibility for program implementation while
AI provides complementary support in program planning,
synthesis, and revision (termed ‘pAIr programming’) [9]. For
novice programmers, pAIr programming has shown signifi-
cant benefits, including improved task performance, reduced
programming time, and lower levels of anxiety and discour-
agement [10], [11]. Through the integration of chat and code
generation, those AI systems in programming transcend mere
tool functionality, taking on roles analogous to instructors or
collaborative partners.

However, some researchers criticize the description of pAIr
programming as human-human pair programming [9], arguing
that the analogy is superficial because it lacks key elements
of human-human pair programming, such as productive com-
munication. This unsatisfied communication has a negative
effect on learning efficacy. Additionally, the lower solution
quality compared to human-human pair brings possible buggy
programs to novices [12], which can raise more need for expla-
nation. Prior research [13] suggests that embodied interaction,
which uses the physical-world couplings between actions
and their effects through analogies and metaphors, offers a
promising approach to making communication more intuitive
and engaging, and potentially more productive. In education,
embodied interaction has been explored as a method to
contextualize programming knowledge, using physical actions
and spatial references to improve expression and facilitate
communication [14]–[16]. For example, body movements and
gestures can contribute to stronger social engagement [17] and
support the use of metaphors to represent concepts [18].

Inspired by these merits, it is worth exploring how the
embodiment of the AI agent impacts pAIr programming. In
this paper, we define an embodied AI agent as a virtual
entity that can recognize and generate both verbal and non-
verbal cues (e.g., gestures and body animations) and provide
context-aware support (e.g., task progress) [19]–[21]. Unlike
traditional embodied conversational agents (ECAs), embodied
AI agents leverage broader open-world knowledge to handle
multimodal inputs, which allows for more efficient communi-
cation and deeper contextual understanding [22]. We created a
block-based programming environment in VR using a Wizard-
of-Oz setup with a virtual programming partner—an embodied
AI agent that can gesture, move, and sense user actions and
scene changes. To understand how embodiment (e.g., gestures
and movements) influences the pAIr programming process, we
evaluated the system with 18 participants. Specifically, we aim
to answer the following research questions:

• (RQ1) How does the embodiment of an AI agent affect
learners’ programming knowledge acquisition?

• (RQ2) How does the embodiment of an AI agent affect
user programming experiences?

II. RELATED WORK

A. Human-AI Pair Programming
Pair programming, where two programmers collaborate on

the same task, has been shown to improve productivity and



code quality, as well as facilitate knowledge transfer [23]–
[25]. However, traditional pair programming faces several
challenges, including cost-efficiency, scheduling conflicts, and
personality mismatches. Its effectiveness is also influenced
by factors such as task complexity and the relative expertise
of programmers [25], [26]. pAIr programming, where an AI
agent replaces a human partner, addresses these challenges by
offering comparable outcomes in productivity, code quality,
and self-efficacy [27]. AI agents adapt to varying exper-
tise, helping mitigate mismatched expertise, and tools like
PairBuddy [28], [29] support both technical and soft skills,
fostering knowledge transfer. Additionally, pAIr programming
alleviates logistical issues, such as scheduling conflicts and
partner compatibility [30]. Despite these advancements, AI
agents currently fall short in areas such as engaging in rich
and productive discussions, which are hallmarks of human-to-
human collaboration in pair programming [27]. Prior study
has emphasized the value of embodied interactions in pair
programming, such as shared gaze awareness and gestures,
as they enable concurrent code viewing and reduce the need
for explicit references, thereby enhancing collaboration [31].
Therefore, exploring the role of embodiment in pAIr pro-
gramming is important. Many ECAs equipped with visual
appearance and embodied actions have been used in edu-
cational settings [32]–[34]. However, most existing ECAs
provide only limited context-aware support, typically rely on
scripted interactions and lack proactive sensing [35]. As a
result, they may miss opportunities for more dynamic and
adaptive support. To address this, we focus on embodied AI
agents with context-aware capabilities and examine their role
as programming partners in pAIr programming, an area that
has received limited attention in prior research.

B. Programming in VR

VR has shown promise in programming education by
improving conceptual understanding and motivation through
immersive, low-cost, and flexible 3D environments [36]–
[41], while also helping reduce health risks from prolonged
sitting [42]. Systems like MR-FTC, Hack.VR, Cubely, and
BlocklyVR support code visualization and hands-on learning,
especially for beginners [42]–[45]. However, existing research
largely focuses on individual learning, with limited exploration
of pair programming in VR, especially with AI agents. Prior
work on virtual avatars in traditional pair programming high-
lights the potential for enhanced collaboration [31]. Building
on this, our study designs a VR-based system where users pro-
gram alongside an embodied AI agent. VR enables embodied
interaction, spatial awareness, and social presence, making it a
powerful medium for investigating how embodiment enhances
the AI agent’s role in programming.

III. METHODS

To investigate the role of embodiment for the AI agent
in programming learning, we employed a hybrid Wizard-of-
Oz (WoZ) design [46]. Participants were let to believe they
were interacting with an autonomous embodied AI agent,

Fig. 1. Overview of the embodied AI programming environment. (a) The AI
agent interacts with participants either proactively based on their progress
or reactively to their inquiries. (b, c) Map sandboxes for the structured
programming tasks: (b) Task 1 requires using a loop structure to collect
all stars and a gift. (c) Task 2 requires using loop, condition, and variable
constructs to collect three red stars and a gift.

but actions were partially controlled by researchers. This
approach enabled us to explore the impact of embodiment
in a controlled environment, even without fully implemented
system functionality. Our study included two task types using
embodied AI agent: structured tasks and unstructured tasks
(see Section III-B2). For structured tasks, we used a within-
subjects design (see Section III-C) with two conditions: em-
bodied AI agent and voice-only AI agent.

A. Participants and Setting

Participants were recruited through email outreach at the
university. Eighteen participants (12 females, 6 males), aged
from 19 to 27 years (M = 24, SD = 2.35), participated in this
study. Among them, 4 participants were frequent VR users,
11 had used it fewer than three times and 3 never used VR.
Regarding programming experience, 12 participants reported
no prior experience, 2 had only basic experience but self-
identified as novices, and the remaining 4 had more advanced
experience with programming concepts and tools. Participation
in this study was voluntary and no compensation was provided.

B. pAIr Programming Systems

1) Programming Environment: We developed the VR pro-
gramming environment using Unity and Oculus Quest 3. It
includes: (1) Block-based programming panel: We adopted
Blockly’s block-based programming approach [47], creating a
panel where users construct programs by blocks. Users select
code blocks with a laser pointer and drag them using the right
trigger button. Compatible blocks snap together automatically.
Pressing the left rear button opens a menu to delete selected
blocks. The panel also supports quick deletion, zooming, and
execution like other block-based editors. (2) Map sandbox: To
provide an intuitive visualization of the program execution, we
incorporated a map sandbox to display real-time programming
results. As shown in Fig. 1 (b, c), users can arrange program-
ming blocks to control the airplane’s movement in the sandbox
and collect stars.



2) Task Design: In order to investigate pAIr programming
with different goals, we designed two types of programming
tasks: (1) Structured tasks: predefined programming prob-
lems (Tasks 1 and 2). Fig. 1b shows Task 1 that requires
participants to use programming concepts of loops to control
an airplane to collect all stars and a gift along a specified path.
Task 2 (Fig. 1c) involves using programming modules related
to loops, conditions, variables to navigate the airplane along a
specified path to collect three red stars and eventually a gift.
(2) Unstructured task: an open-ended design challenge with
no set goals. Completion is based on participants’ subjective
understanding, particularly their sense of aesthetics and har-
mony. Specifically, participants need to control an airplane to
drop objects and decorate the entire map, They can use all the
programming modules to complete this task.

3) Embodied AI Agent: AI agent can dynamically move
within the space and interact with users by giving both reactive
responses and proactive responses through spatial audio and
embodied actions to assist programming (Fig. 1a). Reactive
responses occur when users ask the AI agent a question.
While the AI agent provides voice feedback converted from
LLM-generated text, the researcher uses action placeholders
in the text to control the AI agent to perform corresponding
actions. Proactive responses controlled by researchers occur
and were triggered based on observed hesitation or task-related
pauses. These responses enable context-aware support, where
the system not only reacts to task events (e.g., task comple-
tion) but also responds to user states (e.g., session greetings,
periods of idleness). This context-aware support also uses user-
captured screenshots of their surrounding environment to guide
appropriate responses.

We implemented an embodied AI agent (GPT-4o) with a
human-like appearance, as research shows such agents pro-
mote intuitive interaction in XR [21]. From a Unity animation
asset (Dialogue Anims1), we selected 12 communication-
focused actions, including hand gestures and body movements
like pointing at a block. These cover gesture types [48],
[49]: deictic (e.g., pointing to guide attention), emblematic
(e.g., thumbs-up for praise), and metaphoric (e.g., thinking
to show abstraction). Those are commonly used in everyday
communication and have been shown to support learning [50].
The LLM prompt specifies the AI’s role, task description,
learning goal, and output format (e.g., “As a supportive and
engaging AI programming partner, you guide users to com-
plete tasks, using dynamic actions and concise explanations
to enhance learning, motivation, and understanding while
providing emotional support and tailored feedback.”). The
prompt output format consists of response text accompanied
with action placeholders (e.g., “[Thumbs-up] Good job!”);
in some cases, actions may also appear independently (e.g.,
“[Celebrate]” when user reached the milestone) 2.

1https://assetstore.unity.com/packages/3d/animations/dialogue-anims-
222285

2Full details of prompts and embodied AI agent action lists are available
at: https://github.com/IMYXR/VLHCC2025

4) Voice-only AI agent: To give participants a clear compar-
ison and better isolate the impact of embodiment, we included
a voice-only AI agent that used the exact same prompts as
the embodied agent but without the visual representation. The
verbal content remained consistent across two agents.

5) Wizard-of-Oz Controls: In this hybrid WoZ setup, reac-
tive response generation and action selection are automated
by the LLM model, while researchers manually control the
playback of actions, adjustments to the AI agent’s position,
and the trigger of proactive responses. Users can interact
with the AI agent via audio input and utilize the controller
to take a screenshot in VR. Researcher A handles the real-
time screenshot and the execution of the GPT script. Upon
receiving inputs, the LLM analyzes the user’s context and
generates a text response embedded with action placeholders.
Researcher B monitors Researcher A’s screen to identify action
placeholders and uses the keyboard to control the embodied
actions. To enhance the LLM’s understanding capabilities, we
predefine standard answer images for the three tasks. The LLM
compares the user-uploaded images with these standard images
to better understand the user’s current programming state and
provide targeted feedback.

C. Study Procedure

The study lasts around 90 minutes. First, participants signed
an informed consent form, finished a demographic question-
naire, and received a guided tutorial in experiencing the sys-
tem. They then completed two structured tasks, with the order
of agent conditions counterbalanced, and one unstructured task
only with embodied AI agent in a fixed sequence. Participants
completed a knowledge acquisition assessment before and
after (pre/post-test) each structured task. Both the pre-test
and post-test contained one question, requiring participants
to observe a preset block program and select the correct
execution result along with explaining its justification from
provided options. This design aimed to prevent credit for
correct answers based solely on guessing. Only when both
the choice and the explanation are correct, it is counted as
correct (100%). Other cases are counted as incorrect (0%).
The knowledge acquisition assessment were developed by
researchers and programming instructors to ensure accurate
measurement of learning outcomes. The assessment questions
were specific to the content of each task.

Finally, we conducted a semi-structured interview lasting 15
minutes. The interview focused on general perceptions of AI
agents and its embodiment and future designs. Specifically,
we emphasized the evaluations of the AI agent’s embodied
actions, their views on the performance of the AI agent’s
embodiment in two different task types, and their opinions
on which type of task benefited more from embodied actions.

IV. RESULTS

A. Knowledge Acquisition

To answer RQ1, knowledge acquisition for each condi-
tion for structured tasks was calculated as the difference
between the post-test and the pre-test score. The paired-sample



Wilcoxon signed-rank tests [51] confirmed that both agents can
support programming learning: average knowledge assessment
score increased from 55.5% (SD = 0.496) to 88.9% (SD =
0.314) in the voice-only AI condition and from 50% (SD =
0.5) to 88.9% (SD = 0.314) in the embodied AI condition.
However, a comparison of knowledge acquisition between
the two conditions revealed no significant difference in the
magnitude of improvement (W = 9.0, p = 0.739).

B. pAIr Programming Experiences

We conducted a thematic analysis of our interview data [52]
to answer RQ2. Three authors (all trained in the Glaser
method [53]) independently coded the transcripts using open
coding. Discrepancies were resolved through iterative dis-
cussions and consensus, with constant comparison ensuring
consistency. Themes were then iteratively refined to ensure
they were grounded in the data and reflected key patterns
across the dataset.

1) Embodiment improves understanding and engagement
for programming (T1): Many participants described that the
embodied interaction could intuitively point out key and prob-
lematic programming blocks, which improved clarity when
the AI agent answered their questions. As P12 highlighted the
importance of the pointing gesture “it could identify where
in your code there might be issues, point to those locations,
and accompany this with its explanations.” (P12) Moreover,
P16 valued the agent’s nodding when requested a program
check, since it provided more intuitive feedback compared
to the redundant voice response. The embodiment also in-
creases motivation by encouraging actions such as clapping,
nodding, or celebrating, making the programming experience
more engaging and supportive. “I think the thumbing up,
and this, celebrating, had a greater impact on me since they
gave me support and let me be confident.” (P3, P16) It is
worth noting that the embodied actions of the AI agent also
brought emotional encouragement, providing the feeling of
companionship (P5, P6, P9) and the sense of security (P6)
even in the absence of voice commands (e.g., “cheer gestures
can express emotional support without speech” (P16, P18)).

2) Embodiment influences user’s trust on the agent (T2):
By serving as a confirming and emphasizing cue that signals
the importance of the interaction, it makes the response more
persuasive, encourages users to trust its accuracy, thereby
influencing their decision-making process and programming
outcomes. P1 described the embodied agent as more expressive
and human-like compared to a rigid, computer-like system,
which made it easier to trust and more likely to accept its
suggestions. “Such trust makes me more willing to interact
with it and increases the positivity of the interaction.” (P1)
However, when actions feel out of place or unnatural, they
can undermine trust. Some participants questioned the agent’s
reliability in such moments: “It makes a thumbs-up gesture
even when I haven’t done anything, which feels really strange
to me” (P1); “it keeps repeating the same motion-it’s kind of
like a twitch... waving its hand—doing it once or twice would
be enough.” (P17)

3) Embodiment may introduce distraction during focused
problem-solving moments (T3): Participants noted that in-
appropriately timed embodied interactions can distract them
and disrupt their concentration. For example, both P4 and
P7 noted that the embodied interaction (especially proactive
actions even without accompanying speech) should not appear
when they “paid attention to their interested objects” (P9).
P4 noted that he forgot what AI said because the embodied
actions diverted his attention from the voice. In contrast,
many participants preferred reactive embodied responses (i.e.,
actions triggered by explicit user input), as the presence of
such actions was mentally anticipated, reducing the sense of
disruption and allowing them to better focus on the task. P10
noted, in reactive response, that the embodied interaction did
not disrupt her attention as it just “quietly support and assist
you” when needed. P1 also noted that embodied interactions
felt more appropriate in reactive responses as “passive inter-
actions make users feel a stronger sense of control over the
task”, thus they can focus on the task.

4) Task types influence desired embodied behaviors (T4):
Participants expressed different preferences for embodied ac-
tions according to the task type. In structured tasks, the
programming-related embodied actions were valued for its
practical utility in directly supporting the problem solving for
task completion and saving time. For example, P5 preferred
the embodiment in the structured task because it offered more
timely instructional feedback compared to the open-ended
design task, where, as explained, “there was no right or wrong
regardless of what I did.” (P5) Similarly, two participants
(P4, P12) reported that they knew their programs were wrong
immediately when the embodied AI agent acted “rejecting”,
which was faster than having to listen to the entire audio
before realizing there was a mistake. It is worth noting that
participants’ expectations for the embodiment of AI agent
shifted in unstructured tasks, focusing less on programming-
related suggestions (e.g., pointing) and more on emotional
and design support, such as providing companionship and
encouragement (P3, P9, P16). P4 and P5 attributed this shift
to the unstructured task being perceived as more relaxing and
allowing for freer exploration. The lower sense of pressure and
performance demands in the unstructured task created more
opportunities for experiencing emotional support, as explained
by P16 “I focused more on problem solving in the structure
tasks, . . . , the unstructured task was like a game where the AI
agent became my partner”.

V. DISCUSSION

We examined how embodiment of the AI agent supports
programming learning (RQ1) and affects user experience
(RQ2) through a WoZ study. For RQ1, learners showed
knowledge gains in both conditions but the improvements were
not significantly different between the conditions. For RQ2,
qualitative results showed that embodiment supported pro-
gramming by improving clarity and motivation (T1), shaping
trust that influenced users’ coding decisions (T2), occasionally
distracting during focused tasks (T3), and serving different



roles across task types—enhancing efficiency in structured
tasks and offering emotional support in open-ended ones (T4).

A. Design Implications

1) Matching embodiment with users’ programming sta-
tus: Although our results did not show significantly higher
knowledge acquisition with embodied AI agent compared to
the voice-only agent, findings still indicate that embodied
representation and actions can enhance learners’ motivation
and engagement (T1), which aligns with prior ECA research
in education [32]–[34]. However, as noted in T2 and T3,
poorly timed or unnatural embodied actions could be distract-
ing and reduce the trust of AI agent. Trust plays a critical
role in human-AI collaboration during decision-making [54],
[55], ultimately impacting programming outcomes. We found
that poorly timed embodied actions, especially unexpected
proactive gestures, can distract users from both the task
and the AI’s verbal content. Previous work has investigated
the detection of appropriate moments for proactive interac-
tion [56]. Tang et al. [57] proposed using LLMs to define
event schema for effectively summarizing, narrowing down,
and tracking subtle variations in student behavior. Therefore,
to design a more intelligent embodied programming partner
while reducing distractions, future work should consider using
learning analytics approaches to infer the right moment for
embodied actions, by analyzing students’ step-by-step actions
to detect states such as struggle or system misuse [58]. In
VR environments, additional cues like eye gaze and head
orientation can help estimate user attention [21], allowing for
more precisely timed and contextually appropriate embodied
support during programming tasks. These cues can also be
extended to other XR platforms and integrated with traditional
programming environments to enhance contextual information.

2) Exploring customized embodied representations for pro-
gramming: Previous research has pointed out that avatar
embodied representation influences user emotions [59] and
trust [60], which is also echoed in our results (T1 and T2).
To further strengthen users’ engagement and trust in AI in
pAIr programming, future systems could consider personalize
the embodied agent’s appearance and embodied expression by
leveraging the memory capabilities of LLMs [61] and adapting
to users’ linguistic and behavioral characteristics [62]. The
personalized agent can be further deployed in non-XR pro-
gramming spaces as a 2D partner for standard IDEs. Addition-
ally, T1 highlighted that embodied actions improves the clarity
of the AI agent’s responses. Future research should further
improve multimodal expressiveness and explore personalizing
embodied behaviors based on the cultural context and back-
ground of users to ensure clarity. For example, speaker gesture
styles can influence language comprehension [63] and the
meaning of gestures can vary between different cultures, which
can cause confusion in communication [64]. Considering that
overt embodied behaviors may distract users during periods of
focused attention (T3), future research could explore more sub-
tle alternatives, such as facial expressions [65], or reduce the
visual presence of the embodied AI by minimizing its size or

increasing its transparency to mitigate distractions during these
critical moments. These strategies could be further refined
through user-customized visual designs, such as adjusting
visibility, expression intensity, or animation frequency to better
match individual preferences and attention states.

3) Aligning embodiment with type of programming task:
T4 indicated that the design of embodiment should match par-
ticipants’ expectation at different types of programming task,
which further influenced interaction willingness and perceived
usefulness. Hoffmann et al. [66] was found that the presenta-
tion of embodied actions differs in their application between
goal-oriented and persuasion-oriented scenarios, with distinc-
tions in competence, entertainment value, and informational
content. For quiz-like tasks, such as the structured tasks in our
study, users are assigned clearer goals, and thus may express
more willingness to receive feedback of the programming con-
tent from quick embodied reactions. This suggests the value of
instructional embodied actions in structured tasks, which may
not require accompanying verbal explanations. Such nonverbal
cues can help users quickly identify correctness and guide their
reasoning processes without directly providing answers. In
unstructured or exploratory programming tasks, users are more
inclined toward free exploration and brainstorming [67], which
reduces the need for direct guidance on specific answers.
For such tasks, emotional support should be emphasized to
enhance users’ motivation for continuous exploration. Future
research should design embodied actions based on specific
learning objectives.

B. Limitations and Future Work

The small sample size and the limited number of program-
ming tasks and embodied actions used in this study may
restrict the generalizability of our findings. Future work could
broaden the task scope and vary embodiment designs (e.g.,
facial expressions, expanded gesture sets) to better under-
stand their effects. Second, the content used for knowledge
assessment is relatively basic. Future work will expand both
the scope and diversity of the questions. In addition, we did
not compare voice-only AI agent with embodied AI agent in
unstructured tasks in this study, as participants were already
familiar with voice-based interactions from earlier structured
tasks. We also did not include a fully human-operated agent as
a baseline. A more comprehensive comparative study would
help clarify the nuanced differences in unstructured tasks and
further explore the gap between the AI agent and human
interaction. Finally, as with many Wizard-of-Oz setups, the
reliance on manual observation may introduce slight variations
in agent behavior, potentially affecting the consistency and
accuracy of proactive responses. Making the system fully
automated could make it more reliable and easier to scale in
future deployments.
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APPENDIX

A. Embodied Action Lists

Below is the embodied action lists, we have 12 embodied
action to use in the user study.

(a) Think (b) Celebrate (c) Explain (d) Praise

(e) Disagree (f) Point (g) Bye Bye (h) Malaise

(i) Talk (j) Deep thinking (k) Clap Hand (l) Greeting

Fig. 2. Emobodied Action Lists


